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Abstract
The periodicity of 180◦ stripe domains as a function of crystal thickness
scales with the width of the domain walls, both for ferroelectric and for
ferromagnetic materials. Here we derive an analytical expression for the
generalized ferroic scaling factor and use this to calculate the domain wall
thickness and gradient coefficients (exchange constants) in some ferroelectric
and ferromagnetic materials. We then use these to discuss some of the wider
implications for the physics of ferroelectric nanodevices and periodically poled
photonic crystals.

The generic term ‘ferroic’ designates crystalline materials that are ordered either ferroelectri-
cally, ferromagnetically or ferroelastically (also including antiferroic configurations). Ferroic
materials usually display domains, that is, regions that are either ordered along different polar
axes, or along the same axis but with opposite polarity, the latter being known as 180◦ domains.
Ferroic domains often form regular stripe patterns. Landau [1] first, and Kittel [2] later, showed
that the width of magnetic 180◦ stripe domains (w) is correlated to the thickness of a crystal in
a very well defined manner: the domain width (w) is directly proportional to the square root of
the crystal thickness (d). This law was later extended by Mitsui and Furuichi for ferroelectric
materials [3], and by Roytburd for epitaxially clamped ferroelastic ones [4].

Recently, Schilling et al [5] have shown that the constant of proportionality between
w2 and d is a defining characteristic of the type of ferroic transition being considered, with
ferromagnets having generally bigger domains than ferroelectrics for crystals of the same
thickness. These experimental results were discussed by Scott [6], who observed that the
differences between ferroelectric and ferromagnetic domain periodicity essentially disappeared
once the domain wall thickness was incorporated as a scaling factor. Mathematically this can
be expressed as w2

T d = M , where T is the thickness of the domain wall and d is the crystal
thickness; since domain walls tend to be narrow (a few unit cells) for all ferroelectrics, and
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Figure 1. Above: square of the 180◦ domain width as a function of crystal thickness for some
ferroics (data extracted from [3, 18, 25]). Below: when the square of the domain size is divided by
the wall thickness, all data fall on the same parent curve. The wall thicknesses used for the scaling
have been extracted from [3, 8, 22].

(This figure is in colour only in the electronic version)

broader for ferromagnets (tens of nanometres), the dimensionless factor M ends up being pretty
much the same for both. This is illustrated in figure 1: the different characteristics for w2 as
a function of crystal thickness of ferroelectrics and ferromagnets fall on the same parent curve
once the square of the domain width is scaled by the domain wall thickness T .

Using well known results from the theory of ferroics it is possible to derive a simple
analytical expression for this dimensionless scaling constant M . Here we do this and then
use the result to (a) calculate the thickness of the domain walls and the gradient coefficients
in some ferroic materials, and (b) discuss the implications of our results for the physics of
ferroelectric nanodevices and periodically poled photonic crystals.

We begin by writing the Landau thermodynamic potential of a ferroic with a second-order
phase transition. For simplicity’s sake, we have limited ourselves to the case of 180◦ walls in
a uniaxial ferroic, so a single order parameter will suffice. We call this order parameter Q,
and it can be either the polarization of a ferroelectric or the magnetization of a ferromagnet.
Across a domain wall there is a change of the sign of the order parameter, which means
that there is necessarily a gradient whose associated energy must be incorporated into the
thermodynamic potential. Assuming that Q points along the z-direction and that the domain
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wall is perpendicular to the x-axis, the thermodynamic potential is

�G = a

2
Q2 + b

4
Q4 + k

2

(
∂ Q

∂x

)2

. (1)

For a mono-domain state, and also at the centre of the domains, we can neglect the gradient
term, and minimization then leads to the familiar result for the order parameter in the ferroic
state:

Q2
0 = −a

b
. (2)

The second derivative of the free energy with respect to the order parameter is the stiffness. In
the ferroic state, the result is χ−1 = −2a or, relating this to the order parameter,

χ−1
c = 2bQ2

0. (3)

Here the term ‘stiffness’ has different meanings depending on the ferroic context, being
inverse permittivity for ferroelectrics and inverse susceptibility for magnets.

The energy density of the domain wall is calculated by minimizing the energy difference
between a mono-domain state and a state with one domain wall. That is, one has to minimize
the following [3, 7]:

σ =
∫ +∞

−∞
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(Q2 − Q2

0) + b

4
(Q4 − Q4

0) + k
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where Q0 is given by equation (2). Minimization of σ with the boundary conditions Q(x =
±∞) = ±Q0 leads to the solution of the profile of the order parameter across the domain wall
Q(x) = Q0 tanh(x/δ); the domain wall thickness can then be defined as T ≡ 2δ, where δ is
given by

δ = 1

Q0

√
2k

b
=

√
−2k

a
(5)

and the energy density of the domain wall is

σ = 4
3 Q3

0

√
2kb = 4

3 Q2
0

√−2ka. (6)

Several simplifications have been made in the above treatment. First, in constraining the
order parameter to just one dimension we have implicitly discarded the possibility of Bloch
walls and Néel walls. This is in principle wrong for magnetic materials—though not for
ferroelectrics. However, the analysis of such walls in magnetic materials actually arrives at
the same solutions for δ and σ [8]. Second, in limiting our Landau expansion to the Q4 order,
we are limiting ourselves to second-order transitions, which is not the case for several important
ferroelectrics such as PbTiO3 and BaTiO3, although in thin films of these two materials epitaxial
clamping (regardless of strain) changes the transition from first to second order [9, 10]. The
exact solution of the first-order domain wall can be found in [11]. And third, we have neglected
the elastic coupling to the lattice distortions (strain terms), which is particularly important
in ferroelectrics as they are generally also ferroelastic. However, the effect of strain can be
incorporated by a renormalization of the coefficients in the Landau expansion [7, 9, 10, 12], so
our analysis is valid once the renormalized coefficients are used.

Regarding the physical interpretation of equation (5), k represents an ‘exchange’ constant,
as its energy contribution is proportional to the mismatch of spins/dipoles with respect to their
neighbours (gradient term), whereas a and b represent the ‘anisotropy’ contributions, as they
indicate the strength of the alignment of the order parameter with respect to the crystallographic
axes. Quite naturally, it follows that if the anisotropy terms are big, the domain walls will tend
to be narrow so as to minimize the number of misaligned spins/dipoles, whereas if the exchange
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k is big the domain walls will tend to be wide so that the gradient is as small as possible. In
magnets, the exchange interaction wins, whereas in ferroelectrics the opposite is true: hence
the generally observed difference in domain wall thickness [5, 7].

The exchange constant k is well characterized for most magnetic materials, but that is not
the case for ferroelectrics [13], a problem which has so far complicated the analysis based on
equations (5) and (6). It is therefore interesting to write the energy density as a function of wall
thickness, which removes the dependence on k:

σ = 4
3 Q4

0bδ = − 4
3 Q2

0aδ. (7)

This expression will be used later.
We turn now to the relation between domain periodicity and crystal thickness in a slab cut

perpendicular to the polar direction. The uncompensated dipoles/spins at the surface generate
a large electrostatic/magnetostatic energy, which is reduced by creating domains of opposite
polarity. The depolarization/demagnetization energy of the two crystal surfaces as a function
of domain width is

Fsurface = 7ζ(3)Q2
0

π3

√
χaχcw (8)

where ζ(3) is Riemanns zeta function ζ(3) � 1.202,3 and χa is the permittivity/susceptibility
perpendicular to the polar direction. Although the physical forces involved (electrostatic,
magnetostatic) are different, the Maxwell equations for the energy are analogous, and thus
the resulting expression for the surface energy ends up being much the same [2, 3, 8, 14–16];
the difference between the two ferroics is thus not contained in the shape of the equation, but
only in the magnitudes involved: the order parameter Q (polarization/magnetization) and the
permittivity/susceptibility χ .

The reduction in surface energy achieved by introducing domains is partly offset by the
energy cost of the domain walls, which is proportional to σ , to the wall size (itself proportional
to the crystal thickness d) and to the number density of domain walls (inversely proportional
to the domain width w). Hence, Fwall = σd/w. Adding the two energy components and
minimizing with respect to the domain width w leads to

w2 = π3σ
√

χaχc

7ζ(3)Q2
0

d. (9)

If we now substitute the order parameter Q0 and the energy density σ by their respective
expressions from equations (2) and (7), the final expression for the dimensionless factor is

M ≡ w2

dδ
= 2

3

π3

7ζ(3)

√
χa

χc
� 2.455

√
χa

χc
. (10)

The experimental observation that M is generally a number in the range 1–10 for any
ferroic is thus explained: the result is a numerical constant (�2.455) modified by the square
root of either the dielectric or the susceptibility anisotropy4 depending on whether the material
is ferroelectric or ferromagnetic. This generalized expression is appealingly simple, but it has
some limitations. First, the polarization at the surface has been assumed to be well described by
a square-wave of amplitude P and wavelength 2w. This implicitly assumes that the thickness
of the domain wall is negligible in comparison with the domain width, which is not true

3 Calculating the energy involves integrating the Fourier series of a square-wave of period 2w and amplitude
proportional to Q2; the zeta function appears as follows:

∑∞
n=0

1
(2n+1)3 = (1 − 1

23 )
∑∞

n=1
1

(n)3 = 7
8 ζ(3).

4 A similar equation, implicitly normalized in terms of the extrapolation length, has been reported for ferroelectric
films by Luk’yanchuk and co-workers [17]. While mathematically the extrapolation length and the wall half-thickness
δ are the same, we believe the wall thickness to be a more experimentally meaningful parameter.
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Table 1. Calculated thickness of the domain walls (compared with previously published results)
and calculated value of the exchange constant k using the experimental slope (=δM) of w2 as a
function of d for 180◦ domains in two different ferroelectrics. The Landau coefficients used in the
calculations have been extracted from [3] and [9].

Material δM (nm) εx εz δ (Å) δprevious (Å) k (m3 F−1)

Rochelle salt 21 445 9.8 13 12–22 [3] 9 × 10−11

PbTiO3 3.5 124 66 2.45 �2 [22] 2.8 × 10−11a

a The coefficient k of PTO was calculated using the formula for first-order phase transitions [11].

for extremely small domain periods (e.g., in ultra-thin films), or in the immediate vicinity
of the phase transition. Also, it has been implicitly assumed that the material is a perfect
insulator, so that there is no charge screening the surface polarization. Generally speaking, the
first approximation holds well for 180◦ walls in ferroelectrics, which are thinner than those
of ferromagnets, while the second approximation is better for ferromagnets, as the magnetic
interaction is not screened. Equation (10) is nonetheless quite successful at describing the
results plotted in figure 1, and thus it can be used as a rough guide to explore some practical
problems.

It has been a long-standing and challenging problem to directly measure the thickness of
domain walls in ferroics, and particularly in ferroelectrics, as the latter tend to be very thin and
hard to observe experimentally [19–21]5. On the other hand, theoretical approaches based on
phenomenological models suffer from the fact that the coefficient k of the gradient term is also
hard to characterize experimentally [13]. Our analysis provides a way out by combining an
easy (but indirect) experimental measurement (domain period versus crystal thickness) with an
equation where the gradient coefficient has been eliminated (10). So, measuring the domain
width and knowing the dielectric constants of a material should in principle be enough to
estimate the domain wall width.

In figure 1 we have shown the square of the domain width as a function of crystal thickness
for 180◦ domains in ferroelectric PbTiO3 (PTO) and Rochelle salt, and ferromagnetic Co. All
of them can be analysed with the present treatment, although in the case of the PTO films a
correction due to the effect of the substrate must be taken into account [15, 18]. The measured
slope, the permittivities and the calculated thickness of the 180◦ domain walls are shown in
table 1, compared to previous values extracted from the literature.

Our predicted value for δ of the Rochelle salt is 13 Å (and thus the wall thickness is
T = 2δ = 26 Å), compatible with the results of Mitsui and Furuichi (T = 24–47 Å) [3],
and Zhirnov (δ = 12–220 Å) [7]. As for the predicted value for the domain walls of PTO,
once the effect of the SrTiO3 substrate has been taken into account [15, 18] we obtain that
δ = 2.45 Å or T = 4.9 Å, in excellent agreement with the first-principles calculations of Meyer
and Vanderbilt [22]. The combination of our model with experimental data thus agrees with
previous estimates, and supports the view that ferroelectric 180◦ domain walls are atomically
sharp [23, 24].

The above equations apply to magnetic materials too. Fitting the data for Co [25] to
our model, the calculated domain wall thickness is 20 nm, which is somewhat thicker than
previous theoretical estimates that yield a value of 5–10 nm, but thinner than the experimentally
determined values of 46 nm [26]. All in all, the results suggest that the method is quite robust.

Moreover, once the domain wall thickness has been determined, one can go back to
equation (5) and determine the value of the exchange constant (k) for the material. This

5 We note here that while diffraction analysis for KTiOPO4 (KTP) assumed atomically sharp domain walls [20]; these
authors have later observed their calculations to be tolerant of thicker domain wall assumptions, so the actual thickness
of the domain wall for KTP remains to be experimentally measured.
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constant is in fact important for ferroelectric thin films and nanostructures, and also for graded
ferroelectrics: it comes up in the term associated with the surface depolarization [27–31] and
the compositional gradients [32], both of which have a strong effect on functional properties.
Our calculated values of k for PbTiO3 and Rochelle salt are included in table 1.

Parenthetically, we note also that regular domains in ferroelectric crystals have important
applications in photonics, where they are used for frequency conversion through quasi
phase matching [33]. At present, the regularly spaced stripe domains are achieved through
periodic poling, which has limitations due to the large coercive field—and sometimes
finite conductivity—of some of the most important photonic crystals, such as LiNbO3 and
KTiOPO4. Importantly also, artificially fabricated domain structures are not in thermodynamic
equilibrium, and switchback can occur [34]. While in practice periodic poling is always likely
to be required (e.g. to maximize registration), one can help stabilize the patterned domain
structure by choosing a crystal of the right thickness. Assuming δ = 3 Å and anisotropy = 1, a
periodic domain structure with a domain width of for example 5 μm would be most stable
for a crystal �3 cm thick or, conversely, a 0.5 mm crystal can have domains as small as
0.6 μm. This suggests that the known difficulty in stabilizing narrow domains in thick crystals
is not due to an intrinsic factor: indeed, experiments that exploit the depolarizing effect of
backswitching voltages have achieved self-patterned sub-micron domains in LiNbO3 crystals
0.5 mm wide [35].

In sum, the scaling law for ferroic domains provides a versatile and powerful tool for
analysing the physical properties of ferroic materials in general, and ferroelectrics in particular.
Our own analysis of existing data supports the view that the thickness of 180◦ domain walls
in ferroelectrics is extremely narrow (of the order of one unit cell), and that regular patterns
of sub-micron size domains can be achieved in photonic crystals. More studies of stripe-
domain periodicity as a function of crystal thickness should be carried out to establish domain
wall thickness and exchange parameters for other relevant ferroelectrics such as LiNbO3 and
BaTiO3.

We thank Professor Pam Thomas for useful feedback about periodically poled ferroelectrics.
GC acknowledges financial support from the EU under the Marie Curie Fellowship programme.
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